Publications

Bhandari, B., Cunningham, D. K., Morrell, G., Oh, S., & Smith, P. (in press). Gap between the number of facets of the two poset polytopes. Annals of Combinatorics.

Bishop, J. P., Hicks, M. D., Koehne, C. R., Bui, M. T. T., & White, A. (2025). An activity-based perspective on mathematical authority. Journal for Research in Mathematics Education, 56(4), 159–183. https://doi.org/10.5951/jresematheduc-2024-0057

Bui, M. T. T., & Bishop, J. L. (in press). Measurement: Big ideas and little noticings. Mathematics Teacher: Learning and Teaching Pre-K–12.

Contreras, N., Dawkins, P. C., Guajardo, L. R., Harris, P., Lew, K. M., Melhuish, K. M., Roh, K. H., Williams II, D. A., & Winger, A. (2025). Humanizing proof-based mathematics instruction through experiences reading rich proofs and mathematician stories. Canadian Journal of Science, Mathematics, and Technology Education, 25, 130–145. https://doi.org/10.1007/s42330-025-00354-4

Czocher, J. A., Hardison, H. L., & Kandasamy, S. S. S. (2022). A bridging study analyzing mathematical model construction through a quantities-oriented lens. Educational Studies in Mathematics, 111(2), 299–321.*

Czocher, J. A., Melhuish, K. M., Kularajan, S. S. K., & Roan, E. A. (2021). Dual measures of mathematical modeling for engineering and other STEM undergraduates. International Journal for Research in Undergraduate Mathematics Education, 7, 328–350.*

Czocher, J. A., Roan, E. A., & Kularajan, S. S. K. (2024). Scaffolding moves for constructing cognitively meaningful models of a predator-prey scenario. PRIMUS, 26(6), 638–652.*

Czocher, J. A., Roan, E. A., Quansah, A. L., & Baas, A. (2024). Calculus is the study of change… but differential equations students need help quantifying it. International Journal of Mathematical Education in Science and Technology.

Czocher, J. A., White, A., Kularajan, S. S. K., Roan, E., & Baas, A. B. (2025). Quantizing and visualizing the influence of scaffolding moves on mathematical modeling competencies. Methods in Psychology.

Dawkins, P. C., Roh, K. H., Eckman, D., & Cho, Y. K. (2023). Theo’s reinvention of the logic of conditional statements’ proofs rooted in set-based reasoning. The Journal of Mathematical Behavior, 70, 101043. https://doi.org/10.1016/j.jmathb.2023.101043

Ellis, B. M., & Wrightsman, E. M. (2022). Exploring enacting open tasks from a cultural perspective. Journal of Mathematics Teacher Education in Texas (JMTET), 12(3), 10–13.*

Ellis, B. M., & Wrightsman, E. (2024). A counterstory of a Black girl’s forms of resilience in a standards-based mathematics classroom. Journal of Urban Mathematics Education, 17(1), 48–83. https://doi.org/10.21423/jume-v17i1a514

Fong, C. J., Garcia, A. J., & Kundu, D. (2023). A socio-ecological outcome investigation of the student engagement, achievement, and satisfaction of Latino men in community college developmental mathematics. Community College Journal of Research and Practice. https://doi.org/10.1080/10668926.2022.2132433

Hardison, H. L., & Bui, M. T. T. (2025). Using protractors to move beyond measuring angles. The Australian Mathematics Education Journal, 6(3), 8–15.*

Hicks, M. D., Bishop, J. P., Koehne, C., & Bui, M. (2023). Reconsidering mathematical authority. Mathematics Teacher: Learning and Teaching PreK–12, 116(11), 826–836.*

Jafari, M., Das, S., Starewich, M. J., & Das, S. (2025). SUV–pedestrian crash severity modelling considering unobserved heterogeneity in means and variances. Transportmetrica A: Transport Science, 1–45.*

Keller, T. M., & Pohlman, A. L. (2022). Orbit sizes and the central product group of order 16. Annali di Matematica Pura ed Applicata, 201(4), 1965–1991.*

Kularajan, S. S. K., & Czocher, J. A. (2024). How is reasoning with quantities limited in mathematical modelling? In H.-S. Siller, G. Kaiser, & V. Geiger (Eds.), Springer’s International Perspectives on Mathematical Modeling (pp. 423–433). Springer.*

Lawrence-Wallquist, A. C., Ford, L. L., Kirmizi, M., & Patterson, C. L. (2023). Developing our teaching praxis using a Japanese lesson study model applied to corequisite mathematics. Journal of College Academic Support Programs, 6(1), 55–61. https://doi.org/10.58997/pp2

Lee, H. Y., & Guajardo, L. (2023). A content analysis of tasks involving two-dimensional Cartesian graphs in grade 6–8 U.S. textbooks. Investigations in Mathematics Learning, 15(3), 222–240.*

Lew, K. M., Guajardo, L. R., Gonzalez, M. A., & Melhuish, K. M. (2024). Using extant proofs in the classroom: A comprehension activity structure. PRIMUS.

Melhuish, K. M., Thanheiser, E., White, A., Rosencrans, B., Foreman, L., Shaughnessy, J. M., Guyot, L., & Riffel, A. (2022). The efficacy of a “Mathematics for All” professional development. Journal for Research in Mathematics Education, 53(4), 307–333.*

Melhuish, K. M., Lew, K. M., Hicks, M. D., Guajardo, L. R., Dawkins, P. C., & Morey, S. (2023). Proving, analyzing, and deepening understanding of a structural property in abstract algebra. In Sharing and storing knowledge about teaching undergraduate mathematics: An introduction to a written genre for sharing lesson-specific instructional knowledge (pp. 129–140). Washington, DC: Mathematical Association of America.*

Melhuish, K. M., Guajardo, L. R., Dawkins, P. C., Zolt, H. M., & Lew, K. M. (2023). The role of quotient group meanings in a theorem and proof comprehension task. Educational Studies in Mathematics.

Paoletti, T., Lee, H. Y., Hardison, H. L., Zolt, H. M., Olshefke-Clark, A., Bui, M. T. T., & Margolis, C. (in press). “We’ve been… trying to learn communication and kind of like coordinates”: One student’s developing meanings for coordinate systems and reference frames. Mathematical Thinking and Learning.

Patterson, C. L., Dawkins, P. C., Zolt, H. M., Tucci, A. A., Lew, K. M., & Melhuish, K. M. (2024). Adapting the proof of Lagrange’s theorem into a sequence of group-work tasks. PRIMUS, 1–15.*

Rusnak, L. J., Reynes, J. E. A., Johnson, S., & Ye, P. (2021). Generalizing Kirchhoff laws for signed graphs. Australasian Journal of Combinatorics, 81(3), 388–411.*

Rusnak, L. J., Reynes, J. E. A., Li, R. L., Yan, E., & Yu, J. (2024). The determinant of {±1}-matrices and oriented hypergraphs. Linear Algebra and Its Applications, 702, 161–178. https://doi.org/10.1016/j.laa.2024.08.013

Ruiz, S., Gonzalez, M. A., Dawkins, P. C., & Roh, K. H. (2025). Experienced provers’ operative logical principles for evaluating proofs of conditional claims. The Journal of Mathematical Behavior, 80, 101282. https://doi.org/10.1016/j.jmathb.2025.101282

Tucci, A. A., Dawkins, P. C., & Roh, K. H. (2025). Student justifications regarding converse independence. The Journal of Mathematical Behavior, 80, 101269. https://doi.org/10.1016/j.jmathb.2025.101269

Wrightsman, E. M., Swartz, M. A., & Warshauer, H. K. (2023). Hints as scaffolds to build students' problem-solving skills. Texas Mathematics Teacher, 69(2).*

Zolt, H. M., Wrightsman, E., Ford, L. L., & Patterson, C. L. (2022). Believing in infinity: Exploring students' conceptions of improper integrals. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 33(5), 502–516.*


In addition to the recent publications above, our students have participated in and presented at national and international conferences.